Перевод: со всех языков на русский

с русского на все языки

вектор решения

  • 1 вектор решения

    Большой англо-русский и русско-английский словарь > вектор решения

  • 2 decision vector

    Большой англо-русский и русско-английский словарь > decision vector

  • 3 solution vector

    English-Russian electronics dictionary > solution vector

  • 4 decision vector

    Англо-русский словарь по экономике и финансам > decision vector

  • 5 decision vector

    English-Russian dictionary of computer science > decision vector

  • 6 solution vector

    The English-Russian dictionary on reliability and quality control > solution vector

  • 7 vector

    ˈvektə
    1. сущ.
    1) мат. вектор
    2) мед. переносчик инфекции
    2. гл. направлять, наводить, придавать направление (математика) вектор - * analysis векторный анализ( военное) курс;
    направление (медицина) переносчик инфекции направлять;
    сообщать направление;
    наводить - to * a fighter наводить истребитель absolute ~ абсолютный вектор admissible ~ осуществимый вектор artificial ~ искусственный вектор basis ~ вектор базиса belief ~ доверительный вектор call ~ вчт. вектор перехода code ~ вчт. кодовый вектор column ~ вектор-столбец complex ~ комплексный вектор composite ~ составной вектор constraint ~ вектор ограничений correction ~ поправочный вектор data ~ вчт. информационный вектор decision ~ вектор решения delay ~ вектор задержек dope ~ вчт. дескриптор массива elementary ~ элементарный вектор error ~ вчт. вектор ошибки evidental ~ вектор достоверности extreme ~ экстремальный вектор feasible ~ допустимый вектор fixed ~ фиксированный вектор full ~ полный вектор gradient ~ вектор-градиент incremental ~ инкрементный вектор interrupt ~ вчт. вектор прерываний latent ~ характеристический вектор limit ~ предельный вектор limiting ~ предельный вектор many-dimensional ~ многомерный вектор marginal ~ маргинальный вектор minimum ~ минимальный вектор nonnegative ~ неотрицательный вектор normalized ~ нормированной вектор null ~ нулевой вектор optimal ~ оптимальный вектор positive ~ положительный вектор possible ~ возможный вектор possible ~ допустимый вектор probability ~ вектор вероятностей random ~ случайный вектор relative ~ относительный вектор residual ~ вектор невязок row ~ вектор-строка shift ~ вектор сдвига slack ~ свободный вектор state ~ вектор состояния test ~ тестовый вектор three-dimensional ~ трехмерный вектор unit ~ единичный вектор unit ~ орт vector мат. вектор ~ вчт. вектор ~ вчт. векторный ~ направлять, наводить, придавать направление ~ переносчик инфекции ~ attr. мат. векторный;
    vector equation векторное уравнение ~ attr. мат. векторный;
    vector equation векторное уравнение ~ of characteristics вчт. вектор характеристик ~ of error вчт. вектор ошибок zero ~ нулевой вектор

    Большой англо-русский и русско-английский словарь > vector

  • 8 vector

    [ˈvektə]
    absolute vector абсолютный вектор admissible vector осуществимый вектор artificial vector искусственный вектор basis vector вектор базиса belief vector доверительный вектор call vector вчт. вектор перехода code vector вчт. кодовый вектор column vector вектор-столбец complex vector комплексный вектор composite vector составной вектор constraint vector вектор ограничений correction vector поправочный вектор data vector вчт. информационный вектор decision vector вектор решения delay vector вектор задержек dope vector вчт. дескриптор массива elementary vector элементарный вектор error vector вчт. вектор ошибки evidental vector вектор достоверности extreme vector экстремальный вектор feasible vector допустимый вектор fixed vector фиксированный вектор full vector полный вектор gradient vector вектор-градиент incremental vector инкрементный вектор interrupt vector вчт. вектор прерываний latent vector характеристический вектор limit vector предельный вектор limiting vector предельный вектор many-dimensional vector многомерный вектор marginal vector маргинальный вектор minimum vector минимальный вектор nonnegative vector неотрицательный вектор normalized vector нормированной вектор null vector нулевой вектор optimal vector оптимальный вектор positive vector положительный вектор possible vector возможный вектор possible vector допустимый вектор probability vector вектор вероятностей random vector случайный вектор relative vector относительный вектор residual vector вектор невязок row vector вектор-строка shift vector вектор сдвига slack vector свободный вектор state vector вектор состояния test vector тестовый вектор three-dimensional vector трехмерный вектор unit vector единичный вектор unit vector орт vector мат. вектор vector вчт. вектор vector вчт. векторный vector направлять, наводить, придавать направление vector переносчик инфекции vector attr. мат. векторный; vector equation векторное уравнение vector attr. мат. векторный; vector equation векторное уравнение vector of characteristics вчт. вектор характеристик vector of error вчт. вектор ошибок zero vector нулевой вектор

    English-Russian short dictionary > vector

  • 9 decision vector

    1) Математика: вектор решений
    2) Экономика: вектор решения

    Универсальный англо-русский словарь > decision vector

  • 10 solution vector

    Универсальный англо-русский словарь > solution vector

  • 11 Lösungsvektor

    сущ.

    Универсальный немецко-русский словарь > Lösungsvektor

  • 12 solution vector

    Большой англо-русский и русско-английский словарь > solution vector

  • 13 solution vector

    English-Russian scientific dictionary > solution vector

  • 14 quadratic programming

    1. квадратичное программирование

     

    квадратичное программирование
    раздел выпуклого программирования, совокупность методов решения экстремальных задач, в которых целевая функция (критерий) представляет собой многочлен второй степени (см. Квадратичная форма), а ограничения — линейны. В матричной форме может быть записана следующим образом: x’ Dx + (c’,x) ? max при условиях Ax = b, x?0. Здесь x — n-мерный вектор-столбец, x’ и с’ — n-мерные вектор-строки, b — m-мерный вектор-столбец, A — матрица размерностью m?n, D — квадратная матрица (если она равна нулю, то получаем задачу линейного программирования). Соответственно строится и двойственная задача К.п. Задачи К.п. формулируются, например, тогда, когда оптимум зависит от объема продукции и цен, в свою очередь зависящих от объема. Наиболее эффективно они решаются в тех случаях, когда их удается свести к задачам линейного программирования. Но разработаны и специальные методы их решения.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > quadratic programming

  • 15 model constraints

    1. ограничения модели

     

    ограничения модели
    Запись условий, в которых действительны расчеты, использующие эту модель. Обычно представляя собою систему уравнений и неравенств, они в совокупности определяют область допустимых решений (допустимое множество). Совместность системы ограничений — обязательное условие разрешимости модели: в случае несовместности этой системы допустимое множество является пустым. На практике в качестве О.м. часто выступают ресурсы сырья и материалов, капиталовложения, возможные варианты расширения предприятий, потребности в готовой продукции и т.п. Как правило, если снять ограничения задачи, то показатели ее решения окажутся лучше, чем при решении, соответствующем реальным условиям. И, наоборот, если сделать ограничения более жесткими и тем самым сократить возможности выбора вариантов, то решение окажется, как правило, хуже. В первом случае оно будет оптимистичным, во втором — пессимистичным. Это, между прочим, открывает возможность приблизительного, прикидочного решения некоторых оптимизационных задач: меняя ограничения, можно оценить диапазон значений, в пределах которых находятся решения задачи. На рис.O.3 а, б показаны некоторые важнейшие типы О.м., определяющих область допустимых решений в задачах математического программирования. (Для наглядности — в 2-мерном пространстве, в его первом квадранте). Ограничения I, II, Y — линейные, III, IY, YI — нелинейные. Линейными ограничениями являются на рис. O.3а также оси координат; иначе говоря, в область допустимых решений здесь входят все точки, удовлетворяющие I и II, но кроме того, отвечающие условию  x1  ? 0, x2 ? 0 (см. Неотрицательность значений). Кривая IY — ограничение переменной x2 сверху, YI — ограничение той же переменной снизу. Запись типа  a? x ?b  называется двусторонним ограничением. Все показанные ограничения относятся к типу ограничений-неравенств. Что касается ограничений-равенств, то они определяют область допустимых решений как точку (в одномерном пространстве), как линию (в двумерном пространстве), как гиперповерхность (в многомерном пространстве). Экономико-математические ограничения разделяются также на детерминированные (см. рис. O.3 а, б) и стохастические (см. рис.O.3 в). В последнем случае серия кривых АВС отображает возможные случайные реализации стохастического ограничения. В задачах математического программирования системы ограничений (т.е. выражающих их уравнений и неравенств) удобно записывать в векторной форме: f (x) = b или f (x) ? b и т.п., где x — вектор-столбец управляющих переменных xi (i = 1, 2, …, n), b — вектор-столбец, компонентами которого являются функции ограничений bi (примеры см. в статье Математическое программирование). В моделях планирования ограничения снизу имеют смысл плановых заданий (которые допустимо перевыполнять), ограничения сверху — смысл «квот» на выпуск тех или иных видов продукции. При совпадении ограничений сверху и снизу экономический субъект полностью лишается свободы принятия решений в данной области. В системах моделей различаются общесистемные (или глобальные) О.м., имеющие силу для всей моделируемой экономической системы, и локальные ограничения для моделей отдельных подсистем. Несовместность локальных ограничений с общесистемными приводит к неразрешимости системы моделей.   Рис.О.3  Линейные и нелинейные ограничения
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > model constraints

  • 16 expectation

    1. ожидание (в сетевом планировании)
    2. намерения (мн.)
    3. математическое ожидание

     

    математическое ожидание

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    математическое ожидание
    Одна из численных характеристик случайной величины, часто называемая ее теоретической средней. Для дискретной случайной величины X математическое ожидание равно сумме произведений возможных значений этой величины на их вероятности: Мх= ?хР(х), а для непрерывной случайной величины — интегралу Обозначается обычно: Mx или Ex (в нашем словаре принято первое из этих обозначений). См. также Среднее значение. Математическое программирование [mathematical programming] - (см. также Оптимальное программирование) — раздел математики, который «… изучает методы решения задач на нахождение экстремума функций (показателя качества решения) при ограничениях в форме уравнений и неравенств»[1]. Оно объединяет различные математические методы и дисциплины исследования операций: линейное программирование, нелинейное программирование, динамическое программирование, выпуклое программирование, геометрическое программирование, целочисленное программирование и др. Общая задача М.п. состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (см. Область допустимых решений). В самом общем виде задача записывается так: U = f(x) ? max; x ? M, где x = (x1, x2,…, xn); M — область допустимых значений переменных x1,…, xn; f(x) — целевая функция. Частный случай задачи М.п. — «классическая задача». В ней область M представлена равенствами: g(x) = b, где g(x) — вектор функций ограничений, b — вектор констант ограничений. Названные выше разнообразные дисциплины отличаются друг от друга видом целевой функции f(x) и области М. Например, если f(x) и M — линейны, имеем задачу линейного программирования; если же дополнительно ставится условие, чтобы переменные были целочисленны, имеем задачу целочисленного программирования; если зависимость U от x (т.е. форма f) носит нелинейный характер — задачу нелинейного программирования. Развивающаяся область — стохастическое программирование, задачи которого в отличие от детерминированных характеризуются тем, что их исходные данные (все или часть) — суть случайные величины. [1] Математический аппарат экономического моделирования. М.: “Наука”, 1983, стр 8.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    намерения (мн.)
    стремления (мн.)


    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    Синонимы

    • стремления (мн.)

    EN

     

    ожидание
    В сетевом планировании - процесс, требующий расхода времени без затрат ресурсов
    [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)]

    Тематики

    • сетевое планирование, моделирование

    EN

    DE

    FR

    Англо-русский словарь нормативно-технической терминологии > expectation

  • 17 expected value

    1. ожидаемое значение
    2. математическое ожидание

     

    математическое ожидание

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    математическое ожидание
    Одна из численных характеристик случайной величины, часто называемая ее теоретической средней. Для дискретной случайной величины X математическое ожидание равно сумме произведений возможных значений этой величины на их вероятности: Мх= ?хР(х), а для непрерывной случайной величины — интегралу Обозначается обычно: Mx или Ex (в нашем словаре принято первое из этих обозначений). См. также Среднее значение. Математическое программирование [mathematical programming] - (см. также Оптимальное программирование) — раздел математики, который «… изучает методы решения задач на нахождение экстремума функций (показателя качества решения) при ограничениях в форме уравнений и неравенств»[1]. Оно объединяет различные математические методы и дисциплины исследования операций: линейное программирование, нелинейное программирование, динамическое программирование, выпуклое программирование, геометрическое программирование, целочисленное программирование и др. Общая задача М.п. состоит в нахождении оптимального (максимального или минимального) значения целевой функции, причем значения переменных должны принадлежать некоторой области допустимых значений (см. Область допустимых решений). В самом общем виде задача записывается так: U = f(x) ? max; x ? M, где x = (x1, x2,…, xn); M — область допустимых значений переменных x1,…, xn; f(x) — целевая функция. Частный случай задачи М.п. — «классическая задача». В ней область M представлена равенствами: g(x) = b, где g(x) — вектор функций ограничений, b — вектор констант ограничений. Названные выше разнообразные дисциплины отличаются друг от друга видом целевой функции f(x) и области М. Например, если f(x) и M — линейны, имеем задачу линейного программирования; если же дополнительно ставится условие, чтобы переменные были целочисленны, имеем задачу целочисленного программирования; если зависимость U от x (т.е. форма f) носит нелинейный характер — задачу нелинейного программирования. Развивающаяся область — стохастическое программирование, задачи которого в отличие от детерминированных характеризуются тем, что их исходные данные (все или часть) — суть случайные величины. [1] Математический аппарат экономического моделирования. М.: “Наука”, 1983, стр 8.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    ожидаемое значение

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > expected value

  • 18 systčme économique

    1. экономическая система

     

    экономическая система

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    экономическая система
    1. Часть системы более высокого порядка — социально-экономической системы. Это сложная, вероятностная, динамическая система, охватывающая процессы производства, обмена, распределения и потребления материальных благ. Как всякая сложная система, она должна рассматриваться в разных аспектах. Если рассматривать ее с точки зрения материально-производственной, то ее входом являются материально-вещественные потоки природных и производственных ресурсов, выходом — материально-вещественные потоки предметов потребления, оборонной продукции, продукции, предназначенной для накопления и возмещения, товаров для экспорта, а также отходов производства. В социально-экономическом аспекте ее входом являются определенные производственные отношения людей в обществе, выходом — воспроизведенные и развитые системой производственные отношения. Э.с. может рассматриваться и как сложная информационная система, преобразующая информацию (опыт и знания людей) в новую информацию — новое знание. Э.с. относится к классу кибернетических систем, т.е. систем с управлением (см. Управление экономической системой). Она характеризуется многоступенчатой иерархической структурой, причем отдельные звенья (уровни иерархии) являются также сложными, вероятностными и динамическими системами с управлением, обладающими определенной самостоятельностью и возможностями к саморегулированию. С точки зрения информационной Э.с. в самой общей форме представлена на схеме рис. Э.2. Рис. Э.2 Экономическая система, 1 Пояснений здесь требуют, очевидно, понятия, относящиеся к правой части схемы: способы оценки результирующего состояния системы (блок X) через шкалы предпочтений W, U1, …, Un. Требуется также проследить их связи с понятиями блока Э, и частично — с блоками принятия решений, поскольку результаты функционирования экономики по обратной связи влияют и на принятие решений, на управление ею. Рассматривая шкалы предпочтений U1, …, Un проследим следующее различие: часть локальных звеньев (например, социальных групп) принимает экономические решения, другая же часть по тем или иным причинам решений не принимает, либо принимает, но они не сказываются на результатах X. Обратные связи к A очевидны, а к D1, …, Dn существенно зависят от распределения конечного результата X. Возможны различные сочетания и взаимоотношения шкал предпочтений в зависимости от организации хозяйственного механизма: от полного cовпадения (когда шкалы U1, …, Un производны от W или наоборот, т.е. все интересы в обществе взаимосвязаны и однонаправленны) до расхождения направленности (когда, например, отдельно взятому экономическому субъекту (фирме и пр.) выгодно именно то, что ухудшает результирующие показатели X общества в целом). Возможны и промежуточные варианты, когда часть шкал, предположим U1,.., Uk, направлены в соответствии с W, а другие: Uk+1, …, Un направлены иначе. Из этой схемы очевидны условия, приводящие к наилучшим результатам функционирования экономической системы, т.е. к ее оптимизации. В учебной литературе, объясняющей функционирование Э.с. чрезвычайно распространены схемы кругооборота потоков товаров и услуг между населением и фирмами, уравновешиваемых потоками денежных платежей, осуществляемых в обмен на эти товары и услуги. Например, показанная на рис. Э.3. схема кругооборота факторов (ресурсов) и продуктов в экономике. Аналогично строятся диаграммы кругооборота стоимости (ценообразования), кругооборота денег в экономике и др. 2. В экономико-математической литературе термином “Э.с.” часто обозначают абстрактную конструкцию, упрощенно отражающую основные черты реальной экономической системы — т.е. ее модель. Таковы, например, закрытая модель экономики (содержащая две подмодели: модель производственной сферы и модель сферы потребления) или «модель чистых обменов» — модель системы потребителей (вне производства), которые обмениваются имеющимися у них продуктами. • В общем случае такие модели включают следующие компоненты: а) Пара векторов затрат ресурсов x и «выпусков» продуктов — y, компоненты которых представляют собой интенсивности потоков каждого ресурса и продукта. Такую пару (x, y) принято называть технологическим способом, технологией или производственным процессом, вектор y — вектором валовых выпусков, вектор z = y — x вектором чистых выпусков. б) Система экономических объектов — производителей pi, каждый из которых характеризуется своим технологическим множеством, т.е. множеством возможных для него технологических способов. Совокупность состояний всех элементов pi (i = 1, …, N) принято называть состоянием производственной системы. Экономическое поведение элементов-производителей формулируется здесь как выбор производителем своего производственного процесса из множества технологически реализуемых процессов при имеющихся ограничениях и исходя из некоторого критерия выбора. Аналогичным образом в модели потребления присутствуют отдельные потребители qi или, что чаще, «совокупный потребитель» Q, вектор потребляемых продуктов, характеристики потребительского поведения. Здесь стандартной формой ограничения является бюджетное ограничение, а критерием — целевая функция потребления. Состоянием такой Э.с. называют совокупность состояний ее обеих подсистем — производственной и потребительской. Оперируя моделью изучают некоторые гипотетические характеристики экономики, например, условия ее сбалансированности. 3. Экономической системой называют любой частный экономический объект (часть экономики в смысле 1), подчеркивая его сложный системный характер. В этом смысле говорят о фирме, предприятии, регионе как экономической системе. См. также: Оптимальное функционирование экономической системы, Управление экономической системой, Функционирование экономической системы. Рис. Э.2 Экономическая система, I Z- неуправляемые факторы A – центральный орган управления D1,…Dn — локальные органы управления(социальные группы, институты, организации и т.п. блоки принятия решений); Э – блок «структура и функционирование экономической системы»; Х – блок результирующих показателей состояния экономики; W – шкала предпочтений центрального органа управления относительно агрегатной целевой функции; U1,..Un - шкалы предпочтений локальных звеньев управления относительно своих целевых функций; О.С. обратная связь результатов функциионирования экономики с блоками принятия решений. Рис Э.3 Экономическая система, II
    [ http://slovar-lopatnikov.ru/]

    EN

    economic system
    Organized sets of procedures used within or between communities to govern the production and distribution of goods and services. (Source: TEA)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Франко-русский словарь нормативно-технической терминологии > systčme économique

  • 19 Wirtschaftssystem

    1. экономическая система

     

    экономическая система

    [ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    экономическая система
    1. Часть системы более высокого порядка — социально-экономической системы. Это сложная, вероятностная, динамическая система, охватывающая процессы производства, обмена, распределения и потребления материальных благ. Как всякая сложная система, она должна рассматриваться в разных аспектах. Если рассматривать ее с точки зрения материально-производственной, то ее входом являются материально-вещественные потоки природных и производственных ресурсов, выходом — материально-вещественные потоки предметов потребления, оборонной продукции, продукции, предназначенной для накопления и возмещения, товаров для экспорта, а также отходов производства. В социально-экономическом аспекте ее входом являются определенные производственные отношения людей в обществе, выходом — воспроизведенные и развитые системой производственные отношения. Э.с. может рассматриваться и как сложная информационная система, преобразующая информацию (опыт и знания людей) в новую информацию — новое знание. Э.с. относится к классу кибернетических систем, т.е. систем с управлением (см. Управление экономической системой). Она характеризуется многоступенчатой иерархической структурой, причем отдельные звенья (уровни иерархии) являются также сложными, вероятностными и динамическими системами с управлением, обладающими определенной самостоятельностью и возможностями к саморегулированию. С точки зрения информационной Э.с. в самой общей форме представлена на схеме рис. Э.2. Рис. Э.2 Экономическая система, 1 Пояснений здесь требуют, очевидно, понятия, относящиеся к правой части схемы: способы оценки результирующего состояния системы (блок X) через шкалы предпочтений W, U1, …, Un. Требуется также проследить их связи с понятиями блока Э, и частично — с блоками принятия решений, поскольку результаты функционирования экономики по обратной связи влияют и на принятие решений, на управление ею. Рассматривая шкалы предпочтений U1, …, Un проследим следующее различие: часть локальных звеньев (например, социальных групп) принимает экономические решения, другая же часть по тем или иным причинам решений не принимает, либо принимает, но они не сказываются на результатах X. Обратные связи к A очевидны, а к D1, …, Dn существенно зависят от распределения конечного результата X. Возможны различные сочетания и взаимоотношения шкал предпочтений в зависимости от организации хозяйственного механизма: от полного cовпадения (когда шкалы U1, …, Un производны от W или наоборот, т.е. все интересы в обществе взаимосвязаны и однонаправленны) до расхождения направленности (когда, например, отдельно взятому экономическому субъекту (фирме и пр.) выгодно именно то, что ухудшает результирующие показатели X общества в целом). Возможны и промежуточные варианты, когда часть шкал, предположим U1,.., Uk, направлены в соответствии с W, а другие: Uk+1, …, Un направлены иначе. Из этой схемы очевидны условия, приводящие к наилучшим результатам функционирования экономической системы, т.е. к ее оптимизации. В учебной литературе, объясняющей функционирование Э.с. чрезвычайно распространены схемы кругооборота потоков товаров и услуг между населением и фирмами, уравновешиваемых потоками денежных платежей, осуществляемых в обмен на эти товары и услуги. Например, показанная на рис. Э.3. схема кругооборота факторов (ресурсов) и продуктов в экономике. Аналогично строятся диаграммы кругооборота стоимости (ценообразования), кругооборота денег в экономике и др. 2. В экономико-математической литературе термином “Э.с.” часто обозначают абстрактную конструкцию, упрощенно отражающую основные черты реальной экономической системы — т.е. ее модель. Таковы, например, закрытая модель экономики (содержащая две подмодели: модель производственной сферы и модель сферы потребления) или «модель чистых обменов» — модель системы потребителей (вне производства), которые обмениваются имеющимися у них продуктами. • В общем случае такие модели включают следующие компоненты: а) Пара векторов затрат ресурсов x и «выпусков» продуктов — y, компоненты которых представляют собой интенсивности потоков каждого ресурса и продукта. Такую пару (x, y) принято называть технологическим способом, технологией или производственным процессом, вектор y — вектором валовых выпусков, вектор z = y — x вектором чистых выпусков. б) Система экономических объектов — производителей pi, каждый из которых характеризуется своим технологическим множеством, т.е. множеством возможных для него технологических способов. Совокупность состояний всех элементов pi (i = 1, …, N) принято называть состоянием производственной системы. Экономическое поведение элементов-производителей формулируется здесь как выбор производителем своего производственного процесса из множества технологически реализуемых процессов при имеющихся ограничениях и исходя из некоторого критерия выбора. Аналогичным образом в модели потребления присутствуют отдельные потребители qi или, что чаще, «совокупный потребитель» Q, вектор потребляемых продуктов, характеристики потребительского поведения. Здесь стандартной формой ограничения является бюджетное ограничение, а критерием — целевая функция потребления. Состоянием такой Э.с. называют совокупность состояний ее обеих подсистем — производственной и потребительской. Оперируя моделью изучают некоторые гипотетические характеристики экономики, например, условия ее сбалансированности. 3. Экономической системой называют любой частный экономический объект (часть экономики в смысле 1), подчеркивая его сложный системный характер. В этом смысле говорят о фирме, предприятии, регионе как экономической системе. См. также: Оптимальное функционирование экономической системы, Управление экономической системой, Функционирование экономической системы. Рис. Э.2 Экономическая система, I Z- неуправляемые факторы A – центральный орган управления D1,…Dn — локальные органы управления(социальные группы, институты, организации и т.п. блоки принятия решений); Э – блок «структура и функционирование экономической системы»; Х – блок результирующих показателей состояния экономики; W – шкала предпочтений центрального органа управления относительно агрегатной целевой функции; U1,..Un - шкалы предпочтений локальных звеньев управления относительно своих целевых функций; О.С. обратная связь результатов функциионирования экономики с блоками принятия решений. Рис Э.3 Экономическая система, II
    [ http://slovar-lopatnikov.ru/]

    EN

    economic system
    Organized sets of procedures used within or between communities to govern the production and distribution of goods and services. (Source: TEA)
    [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]

    Тематики

    EN

    DE

    FR

    Немецко-русский словарь нормативно-технической терминологии > Wirtschaftssystem

  • 20 productivity of matrix i.o.

    1. продуктивность матрицы МОБ

     

    продуктивность матрицы МОБ
    Требование, предъявляемое при анализе балансовых уравнений[1] AX + Y = X и состоящее в том, что для получения неотрицательного решения (вектора x) матрица А должна быть продуктивной. Продуктивной называется не­отрицательная матрица A ? 0, если существует хотя бы один такой положительный вектор x > 0, что (I — A) x > 0. Экономический смысл этого определения прозрачен: матрица A ? 0 продуктивна, если существует такой план x > 0, что каждая отрасль может произвести некоторое количество конечной продукции (вектор y ? O). Следует заметить, что в научной литературе требование П.м. формулируется неоднозначно. В ряде случаев матрица называется продуктивной, если вектор x не положительный, как указано выше, а лишь неотрицательный: x ? 0, соответственно и матрица (I — A) x ? ?0? ; предъявляются также некоторые требования к составу конечного продукта (вектору y) и т.д. Вместо термина «продуктив­ная матрица» считается правомерным в том же смысле употреблять термины «продуктивная экономика«, «про­дуктивная система уравнений«, «продуктивная экономическая мо­дель«. [1] Обозначения см. в статье Межотраслевой баланс (МОБ).
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    • productivity of matrix i.o.

    Англо-русский словарь нормативно-технической терминологии > productivity of matrix i.o.

См. также в других словарях:

  • Вектор (математика) — Вектор У этого термина существуют и другие значения, см. Вектор …   Википедия

  • Вектор-06Ц — Тип Домашний компьютер Выпущен 1987 Процессор …   Википедия

  • Вектор-06ц — Тип Домашний компьютер Выпущен 1987 Выпускался по Процессор КР580ВМ80А …   Википедия

  • Вектор Шепли — Вектор Шепли  принцип оптимальности распределения выигрыша между игроками в задачах теории кооперативных игр. Представляет собой распределение, в котором выигрыш каждого игрока равен его среднему вкладу в благосостояние тотальной коалиции… …   Википедия

  • Решения уравнений Эйнштейна —     Общая теория относительности …   Википедия

  • Вектор (персонаж Battle Angel) — Эта статья о персонажах Gunnm. Об аниме и манге см. Battle Angel. Содержание 1 Основные персонажи 1.1 Гали 1.2 Юго 1.3 Дайсукэ Идо …   Википедия

  • Вектор (геометрия) — Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых  точка A  называется его началом, а вторая  B  его концом. Содержание 1 Определение …   Википедия

  • Вектор (Геометрические представления) — Под направленным отрезком в геометрии понимают упорядоченную пару точек, первая из которых  точка A  называется его началом, а вторая  B  его концом. Содержание 1 Определение …   Википедия

  • ВОЛНОВОЙ ВЕКТОР — вектор входящий в выражение где и постоянные, t время. Фнзически (*) обычно интерпретируется как плоская волна частоты , распространяющаяся в направлении вектора с длиной волны . Многие линейные однородные уравнения и системы уравнений с частными …   Математическая энциклопедия

  • Проекционные методы решения СЛАУ — Проекционные методы решения СЛАУ  класс итерационных методов, в которых решается задача проектирования неизвестного вектора на некоторое пространство оптимально относительно другого некоторого пространства. Содержание 1 Постановка задачи …   Википедия

  • Метод вариации произвольных постоянных для построения решения линейного дифференциального уравнения — …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»